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1. The phenomena accompanying the motion of shock waves in media with in- 

finity conductivity [ 1,2 1 , are sufficiently well known. These phenomena 

have an important significance in astrophysical problems, in which the 
magnetic Reynolds’ numbers in front of the shock waves attain very large 

values because of the extremely large characteristic linear dimensions. 
In papers [ 1,2 1 it is assumed that in front of and behind the shock 
waves the electric field achieves equilibrium with the induction field: 

&_“XH (1.1) 
co 

Here E and H are the intensities of the electric and magnetic fields; 

Y and co are the material velocity and the velocity of light. Accordingly 

there are no currents outside the wave. 

In aerodynamics, high speeds lend interest to the consideration of 

strong shock waves in media in which the conductivity in front of the 
shock wave is zero, whilst behind the wave it achieves high values as a 
result of the ionization caused by the wave. These phenomena occur, for 
example, in the motion of a body at high speed in the earth’s atmosphere 
or in the motion of strong shock waves in pipes in the presence of an 

electromagnetic field. In these cases there are no currents in front of 

the shock wave even if condition (1.1) is violated, since the conduct- 
ivity in front of the shock wave is equal to zero. 

It is well known that ideal insulators do not exist in nature, and any 
gas is always to some extent ionized and consequently possesses a certain 
conductivity. The phenomena considered below occur in those cases when 
the magnetic Reynolds’ numbers in front of and behind the shock wave 
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where Cl, and U,, L, and L,, u1 andu2 are respectively the characteristic 

velocities, linear dimensions and conductivities before and after the 

shock wave, We notice that here too an important assumption is made con- 

cerning the smallness of the inertial forces in front of the shock wave, 

i.e. 

With these assumptions we consider the motion of a strong stationary 

shock wave in a gas with a given electromagnetic field in front of the 

wave. 

We shall assume that there are no currents in front of the shock wave 

on account of the small conductivity, whilst the electric and magnetic 

fields may be arbitrary. In the wave itself, due to the GonAtion, the 

conductivity is considerably increased and gives rise to currents which, 

according to our assumptions, rapidly die out; far behind the shock wave 

the electric and magnetic fields are connected by condition (l.1). 

In order to obtain the connection between the parameters of the gas 

and the field at the passage of such a wave, let us consider the equa- 

tions of motion of a gas in the presence of an electromagnetic field. 

The gas will be assumed inviscid and non-heat conducting, and radiation 

will not be taken into account. 'Ihe coordinate system moves with the 

wave itself, and the x-axis is perpendicular to the wave. 

Under these assumptions the equations of conservation of mass, 

momentum and energy can be written down respectively in the form [I I 

%k 
divpv=& ==:o, divg=O 

k 
(1.2) 

Here p and p are the density and pressure of the gas, v is the 

velocity of the gas, "ik is the tensor of the density of the stream 

momentum, g is the vector of the density of the streem energy: 

rcik. = pvivk + p$, - ,+ [Hi N, - + HQik] (1.3) 

,=,v(;.+h)+$ExH (f .4) 

where la is the specific enthalpy of the gas. To the equations of motion 

of the gas (1.2) it is necessary to add also Maxwell's equations for the 

electromagnetic field 
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divH=O, rot E = 0 (1.5) 

rot H = $ j, div E = 47~~ e (1.6) 

Jere j is the current density, p, is the charge density 1 t = p = 11 . 

The Equations (1.2), (1.5) and (1.6) must be satisfied whatever the 

value of the conductivity and therefo,re are applicable both on the left 
and on the right of the shock wave. Applying Equations (1.2)-(1.5) to 

the shock wave, we obtain 

lPV,l = a 
[ 
p+ PC,2 + ET = 0, 

1 l&l = 0 

[ 
fr, H, 

PVxVy- -Jg- 1 = 0, I ffx Hz 
P"r"r- & - =l-j 1 

(1.7) 

(1.8) 

lE,l = 0 (1.10) 

Here and in what follows the square brackets carry the significance 

that [Al = A, - A,, where A, is the value of A in front of the wave, 

whilst 4, is that behind the wave. Equations (1.6) determine the density 
of the surface current and charge at the shock wave and the change in 
the components of the electric field normal to the shock wave. These 

quantities do not enter the other equations and will not be considered 
further in this paper. Making use of condition (1.1) behind the shock 

wave, the relation (1.10) can be written in the form 

coE,, = vzx H,, - vzz fh,, - coEl, = vTx H,, - vz2/ II,, (1.11) 

For the shock waves under consideration the dissociation and ioniza- 

tion of the gas are considerable, so for determination of the specific 

enthalpy behind the shock wave it is necessary to take account of these 

processes. In the general case it can be assumed that 

h = h (p, p) (1.12) 

where h is a known function of pressure and density. Equations (1.7)- 
(1.9) and (1.11) form a closed system for determining the parameters of 

the gas and the field behind the wave. This system of equations differs 
from those considered in the papers [ 1,2 I relating to a discontinuity 
in a medium with infinity conductivity, in that the electric field in 
front of the wave is assumed to be independent of the magnetic field. 

2. In certain cases the System (1.7)-(1.9), (l.ll), (1.12) admits of 
simplification. 



Fundamental relations aeros@ a strong steady ohock mave 797 

1, When vIx = vzx = 0 (tangential discontinuity) we have the motion 
of a ~on~nducting medium relative to one with infinite conductivity. In 
this case the following conditions are fulfilled 

If H, = 0, then also E, = EZ = 0. Moreover the magnetic field and the 
velocity permit an arbitrary jump on passing through the discontinuity. 
If Hz f 0, then [fly1 = 0, W,l = 0, [pl = 0. Choosing the coordinate 
system so that there is no electric field tangential to the discontinuity, 
we find that uzz = vzy = 0, whilst the velocity in the nonconducting 
medium can be arbitrary. The conditions (2.1) must be fulfilled in flow 
of a medium possessing infinite conductivity past a nonconducting body. 

2. When H, f 0 we can always choose a coordinate system such that the 
electric field tangential to the wave vanishes. In this coordinate 
system: 

I PZ'X %J _T$!]=o. [p”&-C!g!q=O. i’;++o (2.2) 

From the two last equations it follows that behind the shock wave the 

velocity vector is collinear with the vector of the magnetic field in- 
tensity. 

‘lhe coordinate system can always be oriented in such a way that the 
following condition 

In fact, let the 
8, whilst the angle 

is fulfilled: 

a 
(PU,) UlZ - -gfqz = 0 (2.3) 

angle formed by the vector vlT with H,, be equal to 
formed by H,, with the axis of z is equal to $J (vlT 

and HIT are the projections of v1 and H, on the plane x = 0). Then the- 
condition (2.3) can be expanded in the form 



798 Iu.L. Zhilin 

In the new coordinate system behind the wave the following relations 

apply: 

(pv,) v2z - H$ H2* = 0, Ha?2z - v2x H2Z 

From this system it follows that either 

(PV,) VBX = 11,2/47c 

and vzz and H,, may be different from zero, or else 

(PV,) v.Jx + Hx=/4n: 

andv2z=R2z= 0. 

In the first case the velocity normal to the wave 

wave will be equal to the Alfven velocity. It is not 
that in this case 

V1U VlZ _=- 

H HlZ 121 

=o 

behind the shock 

difficult to show 

i.e. in front of the shock wave the velocity vector and the vector of 

magnetic field intensity lie in a plane, normal to the wave, whilst be- 
hind the wave the velocity vector may depart from this plane. Ihis case 

is analogous to Alfven’ s wave. 

In this case the vector of velocity behind the shock wave lies in the 

plane z = 0. 

3. With H, = 0 it follows from Equation (1.9) that the velocity tan- 
gential to the wave is continuous. The coordinate system can therefore be 
chosen so that it is, in general, zero; the axis of y is directed along 

the electric field tangential to the wave. In this coordinate system the 
relations at the shock wave can be written down in the form* 

[PVJ = 0, I p+pv~"-~-~]=O,Ipv,~~+h)+$ (EgHr--EzH+O (2.4) 

This case is analogous to the perpendicular wave considered in [ 1 I. 

l An analogous system of equations is considered in the paper [ 3 1, 

published after the submission of the present paper to the press. The 
paper [3 I also contains the Hugoniot adiabatic analysis for the case 
in which, as proved in Section 3 of the present paper, a stationary 
wave does not exist. 
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3. In the foregoing paragraphs it was assumed that the interaction of 

a strong shock wave in a gas with an electromagnetic field could be re- 

duced to a stationary wave. However, for an arbitrarily specified 

electromagnetic field in front of the shock wave, in spite of the exist- 

ence of a solution of the System (1.7)-(1.91, (l.111, (1.12), satisfying 

the condition of increase of entropy, a stationary wave is not always 

realized. In order to demonstrate this, let us consider the following 

example. Let 

QC+ 0, fI,,#Oo, E,, = H, = 0 

As conductivity only makes its appearance in the shock wave, then 

according to Ohm's law the current arising is 

I 

Making use of Maxwell's equations and assuming that inside the wave 

all quantities depend only on x, we have 

dH, 
Y -=vxHv m dx 

(Y,,,=f$, or Hv(z)=H,,exp i “’ 

--co 

Since v,/v. > 0 when x + 00, then it follows that 

H, (2) 
--CC 
H 

as x+00 
11/ 

i.e. in this case there does not exist a steady solution of the equations 

of the structure of the shock wave with Hly f 0, in spite of the fact 
that there exists a solution of the System (2.4). 

A similar state of affairs occurs in the case when 

E,+Q Q+-O* H, = Hlz = 0 

In this case the inductive field always increases the original 

electric field when vx > 0, and therefore the electric currents do not 

die out in the shock wave as x -) Q). 

The examples given prove that the electromagnetic field in front of 

the shock wave must satisfy certain special conditions. These conditions 

can be obtained only from consideration of the equations of the struc- 

ture of the shock wave. 
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